Warm Up:

Solve the following systems by graphing.

a) $y=x^{2}+5 x+6$
$y=5$
b) $y=-.5 x^{2}+4$
$y=x$

Solving Non-linear Systems Graphing DLT

1) Determine if the ordered pair is a solution of the system.

$$
\begin{array}{lc}
\text { a) } 2 x-y=-4 & \text { b) } y=x^{2}-4 x+3 \\
3 x-5 y=15 & y=x+2 \\
(-5,6) & (0.5,1)
\end{array}
$$

2) Graph the systems by hand and determine the solutions).
a) $y=x^{2}+4 x+4$

$$
y=2 x+4
$$

b) $x=3$

$$
y=-|x-4|+3
$$

Solving Non-Linear Systems-Algebraically

Objective:
O Solve non-linear systems using Linear Combination.

O Solve non-linear systems using Substitution.

Solving Non-Linear Systems-Algebraically

Solve the system using Substituion.

a) $y=x^{2}+5 x+6$

$$
y=x^{2}+2 x+5
$$

Solving Non-Linear Systems-Algebraically

Solve the system using Substituion.

b) $y=x^{2}$
$y=8-x^{2}$

$$
\begin{aligned}
& x^{2}=8-x \\
& +1 x^{2}+x \\
& \frac{2 x^{2}}{2}=\frac{8}{2}
\end{aligned}
$$

$$
x=2 \quad x=-2
$$

$$
y=2^{2}
$$

$$
y=(-2)^{2}
$$

Solving Non-Linear Systems-Algebraically

Solve the system using Substituion.
c) $y=x^{2}+3 x+2$

$$
y=2 x+3
$$

Solving Non-Linear Systems-Algebraically
Solve the following algebraically.
 $\dot{x}^{2}+y^{2}=17$

$x=-4 \quad x=1$

Solving Non-Linear Systems-Algebraically

Solve the following algebraically.

$$
\begin{aligned}
& -2\left(3 x^{2}-2 y^{2}=19\right) \quad x=3 \\
& \text { 3(3) })^{2}-2 y^{2}=19 \\
& x=-3 \\
& \text { e) } \begin{aligned}
\left(3 x^{2}-2 y^{2}\right. & =19) \\
4 x^{2}-4 y^{2} & =20
\end{aligned} \\
& -6 x^{2}+4 y^{2}=-38 \\
& \begin{array}{c}
3(9)-2 y^{2}=19 \\
27-2 y^{2}=19
\end{array} \\
& \begin{array}{l}
27-2 y^{2}=29 \\
-27 \\
\frac{-2 y^{2}}{-2}=\frac{-8}{-2}
\end{array} \\
& \begin{array}{r}
-\frac{2 x^{2}}{-2}=\frac{-18}{-2} \\
x^{2}=\sqrt{9}
\end{array} \\
& \begin{array}{c}
-\frac{2 y^{2}}{-2}=-8 \\
5 y^{2}=-34^{-2} \\
y= \pm 2
\end{array} \\
& f^{2}=\sqrt{4}= \pm 2
\end{aligned}
$$

Solving Non-Linear Systems-Algebraically
Solve the following algebraically.

$$
\begin{gathered}
x(-x+2)=1 \\
-x^{2}+2 x=1 \\
-\frac{x^{2}+2 x-1=0}{-1 A} \approx=0 \\
x^{2}-2 x+1=0 \\
(x-1)(x-1)=0 \\
x=1
\end{gathered}
$$

13. Solve the following non-linear system.

$$
\left\{\begin{array}{l}
y=|x-3|+1 \\
x+2 y=8
\end{array}\right.
$$

A) $(0,4)$
B) $(4,2)$
C) $(4,2)$ and $(0,4) \quad$ D) they don't intersect
E) None of these
14. An equation is shown, where a, b, and c are integers.
$y=a(x-b)^{2}+c$
Brian claims that this equation will always have two roots.
Scott claims that this equation will always have zero roots.
Which of the following equations shows that both Brian and Scott are incorrect?
$\begin{array}{ll}\text { A) } y=\frac{1}{2}(x+5)^{2} & \text { C) } y=3(x-6)^{2}+3 \\ 2 & \text { D) } y=-(x-3)^{2}-4\end{array}$
B) $y=\frac{-1}{3}(x+3)^{2}+8$
E) None of these

Review

A) -1
B) 3
C) -3
D) 4
E) None of these
8. Factor the polynomial completely: $x^{3}-5 x^{2}-4 x+20$
A) $\left(x^{2}-4\right)(x-5) \quad$ B) $\left.(x+2)(x-2)(x-5) \quad C\right)(x+2)(x+2)(x-5)$ D) not factorable E) None of these
9. Solve the equation: $5 x^{6}-20 x^{2}=0$
A) $x=0, \sqrt{2},-\sqrt{2}, i \sqrt{2},-i \sqrt{2}$
B) $x=0,2,-2,2 i,-2 i$
C) $x=4,-4$
D) $x=0$
E) None of these

*Go over Matrix DLT

*Time to work on homework

*Practice ws on graphing inequalities.

